Test

\($$ (C)’ = 0 $$ (Với C là hằng số)\)

\(E=mc^2\)

\($$ (x)’ = 1 $$\) \($$ (\sqrt{x})’ = \left(x^{\frac{1}{2}}\right)’ = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \quad (x > 0) $$\) \($$ \left(\frac{1}{x}\right)’ = (x^{-1})’ = -1 \cdot x^{-2} = -\frac{1}{x^2} \quad (x \neq 0) $$\) \($$ (\sqrt[n]{x})’ = \left(x^{\frac{1}{n}}\right)’ = \frac{1}{n}x^{\frac{1}{n}-1} = \frac{1}{n\sqrt[n]{x^{n-1}}} \quad (x>0 \text{ nếu n chẵn}, x \neq 0 \text{ nếu n lẻ > 1}) $$\)